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Abstract
We (re)consider in this paper the problem of tunnelling through an impurity in a
quantum wire with arbitrary Luttinger interaction parameter. By combining the
integrable approach developed in the case of quantum Hall edge states with the
introduction of radiative boundary conditions to describe the adiabatic coupling
to the reservoirs, we are able to obtain the exact equilibrium and non-equilibrium
current. One of the most striking features observed is the appearance of negative
differential conductances out of equilibrium in the strongly interacting regime
g � 0.2. In spite of the various charging effects, a remarkable form of duality
is still observed.

New results on the computation of transport properties in integrable
impurity problems are gathered in the appendices. In particular, we prove
that the TBA results satisfy a remarkable relation, originally derived using
the Keldysh formalism, between the order T 2 correction to the current out of
equilibrium and the second derivative of this current at T = 0 with respect
to the voltage: this is the first direct link between the TBA approach out of
equilibrium and the traditional Keldysh one

PACS numbers: 7363N, 0560G, 7110P, 7321H, 7343J, 7420M

1. Introduction

Tunnelling experiments [1] are one of the most efficient probes of the physics of Luttinger
liquids, which is expected to describe the properties of one-dimensional conductors. The
case of spinless Luttinger liquids has already been extensively studied, both theoretically
and experimentally, in the context of edge states in a fractional quantum Hall bar where,
in particular, shot noise measurements have led to the observation of fractional charge
carriers [2]. The full crossover between the weak and strong back-scattering regimes has
also been studied [3–5]: it exhibits in particular a duality between Laughlin quasiparticles
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and electrons that is the result of the strong interactions in the system, and, ultimately, of
integrability. From a theoretical point of view, it must be stressed that crossovers in this type
of problem can only be properly studied with non-perturbative methods anyway. In fact, for
the physics out of equilibrium, which plays a crucial role in the shot noise experiments for
instance, numerical simulations do not even seem to be available.

Other one-dimensional conductors where Luttinger liquid physics could be observed
include carbon nanotubes [6] or quantum wires in semiconductor heterostructures [7]. A
key question for the latter examples is how to describe the application of an external voltage.
In the fractional quantum Hall case, this turned out to be easy [5] because the left and right
moving excitations are physically separated (the Luttinger liquid is really the ‘sum’ of two
independent chiral ones), and put at a different chemical potential by the applied voltage. This
will not be the case in a real quantum wire, where various charging effects have to be taken
into account.

The matter led to some active debating [8, 9], and now seems quite settled. We follow
here the approach of [9], which easily allows the inclusion of an impurity. We thus consider a
gated quantum wire coupled adiabatically to 2D or 3D reservoirs. As in Landauer–Buttiker’s
approach for non-interacting electrons [10,11], these reservoirs are assumed to be ‘ideal’, and
merely are there to inject bare densities of left and right movers in the wire. The interactions
in the wire lead to the appearance of a non-trivial electrostatic potential and, in turn, to a
renormalized charge density in the wire, in the absence of impurity. When the impurity is
present, there is in addition a non-trivial spreading of the charges along the wire.

The key ingredient in the analysis of [9] is the equivalent of Poisson’s equation, which
becomes a relation between the electrostatic potential ϕ and the charge density: eϕ = u0ρ.
Here, u0 is related to the Luttinger liquid constant by g = (1+u0/π h̄ vF)

−1/2. The electrostatic
potential in turn shifts the band bottom, and thus the total density. There follows a relation
between the bare injected densities and the true densities:

ρ0
R = g−2 + 1

2
ρR +

g−2 − 1

2
ρL

ρ0
L = g−2 − 1

2
ρR +

g−2 + 1

2
ρL.

(1)

As for the bare densities themselves, they are related to the external voltage sources

ρ0
R(−L/2) = eU

4πh̄vF

ρ0
L(L/2) = − eU

4πh̄vF
.

(2)

The Hamiltonian, including the impurity term, is then, after bosonization,

H = h̄v

8π

∫
dx

[
(∂xφR)

2 + (∂xφL)
2
]

+ λ cos
[√
g (φR − φL)

]
(0) (3)

where v = vF
g

is the sound velocity.
To proceed, one defines odd and even combinations of the bosonic field. Only the even

field interacts with the outside potential and gives rise to a current. Setting

φe,o = 1√
2

[φR(x)∓ φL(−x)] (4)

the Hamiltonian of interest is

He = h̄v

8π

∫
dx (∂xφe)

2 + λ cos
(√

2gφe
)
(0) (5)
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where φe is a pure right moving field. In these new variables, the boundary conditions (2) are

(g−1 + 1)ρe(−L/2)− (g−1 − 1)ρe(L/2) =
√
g

2

eU

πh̄vF
. (6)

In going from (1) to (6), the relation ρR,L =
√
g

4π ∂x
[
φR − φL ± 1

g
(φR + φL)

]
, which follows

from bosonization, has been used. We have also defined ρe,o = 1
2π ∂xφe,o. Finally, a mistake

in [9] was corrected (see [12]).
Our goal is to compute the current I flowing through the system as a function of the

applied voltage U in the limit of large wires3 L → ∞. In [9], this was accomplished in the
case g = 1

2 , using a mapping on free fermions. In this paper, we shall solve the problem for
general values of g using integrability of the boundary sine-Gordon model [13,14]. This paper
can be considered as a sequel—and to some extent a correction—to [5,15], where the charging
effects were not yet fully understood. It is also an extension of the short letter [16].

2. General formalism

First, we set e = v = h̄ = 1 (so vF = g). To treat the interaction term at x = 0 in an integrable
way, one needs to choose an appropriate basis for the bulk, massless, right moving excitations,
which obey e = p. For g generic, the basic excitations can be kinks or antikinks—carrying
a ρe charge equal to ±1—and breathers. In the following we shall often restrict for technical
simplicity to g = 1

t
, t an integer. There are then t − 2 breathers. We shall parametrize

the energy of the excitations with rapidities ej = mjeθ . Here mj is a parameter with the
dimension of a mass; for kink and antikink, m± = µ, while for breathers, mj = 2µ sin jπ

2(t−1) ,
j = 1, . . . , t − 2. The value of µ is, of course, of no importance since the theory is massless,
and in the following we shall simply set it equal to unity. The massless excitations enjoy
factorized scattering in the bulk. At a temperature T , and with a choice of chemical potentials,
they have densities given by solutions of the thermodynamic Bethe ansatz (TBA) equations,
which we shall generically denote by σj (not to be confused with charge densities).

The key point is that these excitations also have a factorized scattering through the impurity,
described by a transmission matrix T±±. This matrix depends on the ratio of the energy of
incident particles to a characteristic energy scale TB. In the following, it is useful to parametrize
TB = eθB . The modulus squares of the transmission matrix have very simple expressions; we
recall that

|T++|2 = e2
(
(1/g)−1

)
(θ−θB)

1 + e2
(
(1/g)−1

)
(θ−θB)

. (7)

Finally, we also recall how TB is related to the bare coupling λ [5]:

TB = (2 sin πg)1/(1−g)  
(

g

2(1−g)
)

√
π 

(
1

2(1−g)
) [λ (1 − g)/2]1/(1−g) . (8)

To proceed, we start by expressing the boundary conditions in terms of the massless scattering
description:

ρe(L/2) = 1√
2g

∫ ∞

−∞

(
σ+ |T++|2 + |T+−|2 σ− − |T−−|2 σ− − |T+−|2 σ+

)
dθ

= 1√
2g

∫ ∞

−∞
(σ+ − σ−)

( |T++|2 − |T+−|2 )
dθ. (9)

3 In that limit, the position of the impurity along the wire is irrelevant, and is chosen at x = 0 for convenience only.
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Here, σ± are the densities of kinks and antikinks; we set σ± = nf± where n = σ + σh is the
total density of states of kinks or antikinks and f± are the filling fractions. The factor 1√

2g

occurs because 1√
2g

is the electric charge 1
2π

∫
∂xφe associated with the fundamental kinks of

the problem.
All quantities of interest can be expresed using ‘pseudo energies’. The pseudo-energies

for kinks and antikinks, ε±, are equal and are related to n (the total density of states of kinks
or antikinks), n = 1

2π
d

dθ ε±. Pseudo-energies for the other types of particles have also to be
introduced, and they are obtained as solutions of the TBA system of equations

εj = T
∑
k

Njk

s

2π
' ln

(
1 + e(εk−µk)/T

)
(10)

where s(θ) = t−1
cosh((t−1)θ) , g = 1

t
, and Njk is the incidence matrix of the following TBA

diagram:

 +

 �

.

/
1 2 t� 3

|||||||| t� 2

Equations (10) have to be supplemented by asymptotic conditions εj ≈ mjeθ as θ → ∞.
In (10), the chemical potential vanishes for all the breathers which have no U(1) charge. For
the kinks and antikinks, µ± = ∓W

2 , where W has to be determined self-consistently. (The
logic here is that the external potential and the temperature determine uniquely the average
densities everywhere in the quantum wire. As always in macroscopic statistical mechanics,
this can be described instead by a distribution with fixed chemical potentials, which is exactly
what the TBA allows one to handle. By U(1) symmetry, it is known in advance that only the
kinks and antikinks have a non-vanishing chemical potential µ± = ∓W

2 .) The filling fractions
are then

f± = 1

1 + e(ε∓W/2)/T
. (11)

The charge density on the left side of the impurity is simply ρe(−L/2) = 1√
2g

∫
(σ+ − σ−) dθ

(it can be simply reexpressed in terms ofW : ρe(−L/2) =
√

g

2
W
2π ), so the boundary conditions

equation (2) becomes∫ (
|T++|2 +

1

g
|T+ −|2

)
(σ+ − σ−) dθ = U

2π
. (12)

The other key equation in the solution of the problem follows from the charge density drop
across the barrier

)ρ = ρ(x < 0)− ρ(x > 0) = g
V

π
. (13)

Here, ρ = ρR+ρL andV is the four terminal voltage (that is, the voltage difference measured by
weakly coupled reservoirs on either side of the impurity; it consists of an electrostatic potential
drop, plus an electrochemical contribution). By following the previous transformations, one
finds that )ρ = )(σ+ − σ−), and thus (13) is∫

|T+ −|2 (σ+ − σ−) dθ = g
V

2π
. (14)
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Finally, the tunnelling current I = U−V
2π is, from (13) and (12),

I =
∫

|T++|2 (σ+ − σ−) dθ. (15)

If T/TB orU/TB are large (the high energy, or weak back-scattering limit), the solution of (12)
is

∫
(σ+ − σ−) dθ ≈ U

2π , and thus from (15), I ≈ ∫
(σ+ − σ−) dθ = U

2π . This, once physical

units are reinstated, is I = e2

h
U , the expected formula for a spinless quantum wire.

From the foregoing system of equations, it is now easy to deduce the following identity
giving the parameter W in terms of the physical voltage and current:

U = 2π

(
1 − 1

g

)
I +W. (16)

The following relation is also quite useful:

V = W − 2π

g
I. (17)

3. Results

The limit g → 1, which describes non-interacting electrons, is very simple. In that case
indeed, the T matrix elements become rapidity independent, and the system of equations can
readily be solved to give V = |T+ −|2 U , I = |T+ +|2 U

2π . Here, the transmission probability
is not trivial in general since, as g → 1, θB has to diverge to ensure a finite value of the bare
coupling λ [14, 17].

The system of equations determining I can also be solved easily in the ‘classical limit’
g → 0, where [18] (this is detailed further in appendix A)

I ≈ 2g
T

2π

sinh(W/2T )

IiW/2πT (2x)I−iW/2πT (2x)
x = TB

4T
(18)

where I are the usual Bessel functions and W follows from (16).
Closed form results can also be obtained for g = 1

2 (see below); besides, except at T = 0,
one has to resort to a numerical solution of the TBA equations. To tackle the physics of this
problem as g varies, we consider first the linear conductance at temperature T . In the limit
U → 0, the foregoing system of equations can easily be solved by linearization, giving rise to

G = 1

2π

∫ |T+ +|2 d
dθ

(
1

1+eε/T
)

dθ∫ ( |T+ +|2 + 1
g

|T+ −|2 )
d

dθ

(
1

1+eε/T
)

dθ
= 1

2π

G0

1 +
(
1 − 1

g

)
G0

(19)

where G0 is the linear conductance in the quantum Hall effect problem [5] (the numerator of
this equation). One of the roles of the denominator is to renormalize the conductance from g

to unity in the UV region. In the case g = 1
2 , equation (19) can be evaluated in closed form to

give

G = 1

2π

1 − TB
2πT /

′ ( 1
2 + TB

2πT

)
1 + TB

2πT /
′ ( 1

2 + TB
2πT

) (20)

where / is the digamma function. For values g = 1
t
, t an integer, G is easily determined

numerically by solving the system of TBA equations (10), and plotting the soliton pseudo-
energy back into (19). Curves for various values of g are shown in figure 1; features entirely
similar to those in [5] are observed, although all the curves now converge to the same value
in the high temperature limit, in contrast with the quantum Hall edge case. The effect of the
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0 2 4 6 8 10
 T/TB

0

0.2

0.4

0.6

0.8

1

2 
π 

G

t=2
t=3
t=7

Figure 1. We represent here the conductance as a function of the universal ratio of temperatures
T/TB for several values of g = 1/t , t an integer. In this domain—which is the easiest to study
numerically—G has only a weak dependence on g. These curves interpolate between two limiting
behaviours: for g = 1, 2πG should become a constant equal to 1/2, while for g = 0 2πG should
vanish for any finite value of T/TB.

impurity is considerably amplified as g gets smaller, withG getting a discontinuity in the weak
back-scattering limit as g → 0. Indeed, letting U → 0 in (16), one finds

G = I

U
≈ 1

2π

1(
1 − 1

g

)
+ 1

g
I 2

0 (2x)
. (21)

As g → 0, G thus becomes a step function, jumping from 1
2π to 0 as soon as TB (TB = 2λ for

g = 0) is turned on, for any temperature.
Another simple limit to study is the case T = 0, where results are far more intriguing.

Consider first the classical limit, and think of I and U as functions of the parameter W : as
W is swept, one finds that I vanishes while U increases up to πTB, then goes back to zero,
beyond which I increases like I = U

2π . In other words, the system behaves either like a perfect
insulator, or like a perfect conductor! This very singular behaviour is the g → 0 limit of a
multivalued I–U characteristic with regions of negative differential conductance [16], that we
now study in more detail.

Indeed, the TBA equations can be solved in closed form in the limit T → 0. In that limit,
σ− = 0, the integrals run only from −∞ to a cut off (Fermi) rapidity A, and σ+ = n follows
from the solution of the integral equation

n(θ)−
∫ A

−∞
1(θ − θ ′)n(θ ′) dθ ′ = eθ

2π
(22)
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while A is determined by the condition that εh+(A) = 0, where

εh+(θ)−
∫ A

−∞
1(θ − θ ′)εh+(θ

′) dθ ′ = W

2
− eθ . (23)

In that equation, 1 is the derivative of the log of the kink S matrix

1(θ) =
∫ ∞

−∞
e−iωθ

sinh π
(

2g−1
2(1−g)

)
ω

2 cosh πω
2 sinh πgω

2(1−g)

dω

2π
.

SinceW determinesA uniquely (one finds eA = W
2
G+(0)
G+(i)

, where the propagatorsG are defined
below), in what follows we will consider instead A as the unknown when T = 0. After a few
rearrangements, the relevant equations are now (we still set g = 1

t
, although t does not have

to be an integer here)∫ A

−∞
n(θ)

t + e2(t−1)(θ−θB)

1 + e2(t−1)(θ−θB)
dθ = U

2π
(24)

and

I =
∫ A

−∞
n(θ)

e2(t−1)(θ−θB)

1 + e2(t−1)(θ−θB)
dθ. (25)

The density n(θ) can be computed as a power series in the weak and strong back-scattering
limits, giving rise to expansions for the current and the boundary conditions. In the strong
back-scattering case one finds

I = G+(i)

G+(0)

eA

π

∞∑
n=1

(−1)n+1

√
π  (nt)

2 (n) 
(

3
2 + n(t − 1)

)(
eA+)−θB

)2n(t−1)
(26)

while the boundary condition is

2
G+(i)

G+(0)
eA − (t − 1)

G+(i)

G+(0)
eA

∞∑
n=1

(−1)n+1

√
π  (nt)

 (n) 
(

3
2 + n(t − 1)

)(
eA+)−θB

)2n(t−1) = U.

(27)

In the weak back-scattering limit instead, one finds

I = G+(i)

G+(0)

eA

πt2

[
t −

∞∑
n=1

(−1)n+1

√
π  (n/t)

2 (n) 
(

3
2 + n( 1

t
− 1)

)(
eA+)−θB

)2n((1/t)−1)
]

(28)

where

2

t

G+(i)

G+(0)
eA − 1

t

(
1

t
− 1

)
G+(i)

G+(0)
eA

∞∑
n=1

(−1)n+1

×
√
π  (n/t)

 (n) 
(

3
2 + n( 1

t
− 1)

)(
eA+)−θB

)2n((1/t)−1) = U. (29)

Here we have introduced the notations

G+(ω) =
√

2πt
 

( − iω t
2(t−1)

)
 

(
1
2 − iω2

)
 

( − iω 1
2(t−1)

)e−iω) (30)

where

) = 1

2
ln(t − 1)− t

2(t − 1)
ln t. (31)
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0 1 2 3 4 5
W/TB

0

1

2

3

4

U
/T

B

t=1.2
t=3
t=6
t=9

Figure 2. The applied voltage difference U/TB as a function of the chemical potential difference
between solitons and antisolitons, W/TB. Observe the remarkable non-monotonic behaviour that
settles in for small enough values of g. This results in the existence of two possible values of W
for a given U , and thus in the existence of the loop in the I–U characteristic.

In terms of the auxiliary variable W , the strong and weak back-scattering expansions have
matching radius of convergence: either one of them is always converging, and both are at the
matching value W

T ′
B

e−) = 1, where the parameter T ′
B is defined as

T ′
B = 2TBe−) G+(i)

G+(0)
. (32)

The series can be summed up in the case g = 1
2 to give

tan
U − 2πI

2
= U + 2πI

2
. (33)

There is a rich physical behaviour hidden in these equations. To investigate it, consider
first the behaviour of physical quantities as a function of W . Curves representing U and 2π

g
I

as a function of W for various t are given in figures 2 and 3.
As g → 0, the current in the strong back-scattering expansion is exactly 0. In the weak

back-scattering expansion meanwhile, it becomes
2πI

g
≈ (

W 2 − π2T 2
B

)1/2

and hence exhibits a square root singularity at finite value of W (we note that the latter
expression can also be obtained directly from the result (18) by using the uniform asymptotic
expansion of Bessel functions for large orders [19]:

Iν(µz) ≈ 1√
2πν

eνη

(1 + z2)1/4
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0 1 2 3 4 5
W/TB

0

1

2

3

2 
π/

g 
I/

T
B

t=1.2
t=3
t=6
t=9

Figure 3. In contrast, the current I as a function of W exhibits, once properly rescaled, a very
weak dependence on g. All curves behave asymptotically as W/TB in the weak back-scattering
limit.

where η = √
1 + z2 + ln z

1+
√

1+z2 ). When t is varied, the current evolves from this singular

behaviour to the simple characteristics I = W
4π as g → 1 (this is easily seen from the integral

representations of I and U and an artefact of the variable TB used throughout, that would have
to be rescaled appropriately in that limit to give a non-trivial I–U relation [14]). At fixed
g �= 1, I ≈ W

2π at large W .
As g → 0, U in the strong back-scattering expansion is simply equal to W , while in the

weak back-scattering expansion it is

U ≈ W − (
W 2 − π2T 2

B

)1/2
.

As g → 1 meanwhile, U ≈ W . When g varies, U interpolates between these two limiting
behaviours and stops having a (local) maximum around t ≈ 4.83.

The fact that U can decrease as W increases is a direct consequence of the physics in
this system. The density on the left, ρe(−L/2) ∝ W . An increase in W increases the left
density, but it also increases the right density, since particles being more energetic, more of
them go across the impurity. U is a non-trivial function of the densities on either side of the
impurity, as given by (6). For g large, U behaves essentially as the sum of the densities in
±L/2, and thus increases when W increases. However, when g → 0, U gets dominated by
the difference of the densities, and if enough particles go across, it can well decrease when
W increases. This effect is directly related to the fact that the differential conductance 2π dI

dW

does, for g < 1
2 , actually become larger than g for finite values of W an effect first observed

in [5] (see figure 4).
Consider now I as a function ofU : clearly, the existence of a maximum in the curveU(W)
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0 2 4 6 8
 W/TB

0

0.6

1.2

1.8

2 
π/

g 
dI

/d
W

t=5
t=7
t=9

Figure 4. The rescaled derivative of the current with respect to W at T = 0. Notice the existence
of a maximum above the weak back-scattering limit (equal to 1) for t � 2. This peak of differential
conductance becomes more and more marked as g → 0.

will lead to an S-shaped I (U). More precisely, consider first the case g ≈ 0. Suppose we
increaseW starting from 0. According to the previous discussion, U ≈ W − (W 2 −π2T 2

B )
1/2,

so (as illustrated in figure 2 for slightly larger values of g) U first increases up to πTB, then
decreases back to zero. W being still finite, I vanishes identically, since it has an overall factor
of g. Going now to the regime where W becomes infinite, U ≈ W and I ≈ W

2π ≈ U
2π : the

system has switched from being a perfect insulator to being a perfect conductor! This is easy
to understand in more physical terms: as g → 0, the kinetic term dominates the Lagrangian
and one might expect that the impurity is essentially invisible. However, as g → 0, there is
the possibility that a charge density wave might form, getting pinned down by an infinitesimal
potential, and leading to a perfect insulator [16].

This effect is stable against quantum fluctuations and, for g approximately smaller than
g = 0.2, a ‘loop’ keeps being observed in the I–U characteristics. That the current is not a
single valued function of U in the region of small voltages leads to the prediction of hysteresis
and bistability in the strongly interacting, out-of-equilibrium regime. Although the present
calculation is valid only in the scaling regime, this qualitative aspect should survive beyond it.

The loop is also stable against thermal fluctuations: as is illustrated in figure 5 for the
case t = 6, it only disappears at a finite temperature Tc which depends on g. A semiclassical

approximation [16] gives Tc = TB

√
(1−g)

16g : this formula is not quite correct for values of

g � 0.2, but becomes increasingly good as g → 0. It is quite difficult numerically to
determine Tc with a great accuracy: a reasonable estimate of this curve is given in figure 6.



External voltage sources and tunnelling in quantum wires 5507

0 0.5 1 1.5 2 2.5
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Figure 5. We illustrate in this figure the disappearance of theS shape as the temperature is increased.
Clearly, the bistability is stable against thermal fluctuations in a finite range which depends on g.
Here, g = 1/6.
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Figure 6. The ‘critical’ temperature Tc(g) at which bistability disappears. Notice the poor quality
of the leading semi-classical approximation (full curve).
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4. Duality

For the problem of tunnelling between quantum Hall edges, a striking duality between the
weak and strong back-scattering limits was uncovered in [5] at T = 0, and further generalized
to any T [20]. The meaning of this duality was that, while the Hamiltonian describing the
vicinity of the weak back-scattering limit is given by (5), the one describing the vicinity of
the strong back-scattering limit can be reduced, as far as the dc current is concerned, to an
expression identical with (5), up to the replacement of the coupling λ by a dual coupling λd,
together with the exchange g → 1

g
. As a result, a duality relation for the current followed

I (λ, U, g) = gU

2π
− gI

(
λd, gU,

1

g

)
. (34)

Here, the dual coupling λd is

λd = 1

πg
 

(
1

g

) [
g (g)

π

]1/g

λ−1/g. (35)

The relation (35) follows from keeping the parameter

T ′′
B ≡ T ′

B√
t

(36)

constant4 while letting g → 1
g

, and using the relation (8) between TB and the bare coupling in
the tunnelling Hamiltonian.

For pedagogical purposes, it is probably wise to explain a little more explicitly what
the duality means. Consider thus a hypothetical current defined non-perturbatively by the
expression

I = 1

x2 + g2
. (37)

It obeys the following duality relation

I

(
1

x
,

1

g

)
= g2 − g4I (x, g). (38)

Suppose now we did not know the non-perturbative expression, but had only access to the
small x expansion

I = 1

g2

∞∑
n=0

(−1)n
(
x2

g2

)n
(39)

and the large x one

I = 1

x2

∞∑
n=0

(−1)n
(
g2

x2

)n
. (40)

The duality (38) could then be deduced from the expansions by, say, starting from the small
x one, setting x = 1

x ′ , g = 1
g′ , and comparing the new expression with the large x expansion.

What was done in [5] was to find a similar duality, only based on the weak and strong back-
scattering expansions (a non-perturbative expression for the current was found much later [21]).

It is interesting to examine what does remain of this duality in the present case. The IR
Hamiltonian will behave similarly to the case of tunnelling between quantum Hall edges, since
it is entirely determined by the large λ behaviour and has no relation with the way the voltage is

4 In [5], the duality relation was initially written at constant T ′
B. While the identities in [5] are algebraically correct,

it is really T ′′
B that has to be kept constant, since the applied voltage is not left invariant in the duality transformation.
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taken into account. This means that the parameter T ′′
B still has to be kept constant in whatever

duality symmetry one is looking for.
There is a quick way to proceed, assuming from [5] the relation (34), which becomes here

I (λ,W, g) = gW

2π
− gI

(
λd, gW,

1

g

)
. (41)

Using this, together with the relation (16), one finds the additional relation

U(λ,W, g) = U

(
λd, gW,

1

g

)
. (42)

From this it follows that

I (λ, U, g) = U

2π
− I

(
λd, U,

1

g

)
. (43)

For completeness, we can also give a direct proof of this relation. It is convenient first to
put the equations in a more compact form, namely

7s

[
1 − (t − 1)

∞∑
n=1

αn7
2n(t−1)
s

]
= us

is(t, us) = 7s

∞∑
n=1

αn7
2n(t−1)
s

(44)

for the strong back-scattering limit and

7w

t

[
1 −

(
1

t
− 1

) ∞∑
n=1

βn7
2n((1/t)−1)
w

]
= uw

iw(t, uw) = 1

t2
7w

[
t −

∞∑
n=1

βn7
2n((1/t)−1)
w

] (45)

for the weak back-scattering limit. In (44) and (45)

αn =
√
π

2
(−1)n+12n(t−1)  (nt)

 (n) ( 3
2 + n(t − 1))

βn =
√
π

2
(−1)n+12n((1/t)−1)  (n/t)

 (n) ( 3
2 + n( 1

t
− 1))

= αn

(
1

t

)

is = iw =
√

2

t

πI

T ′′
B

us = uw =
√

2

t

U

2T ′′
B

.

(46)

To match with our previous notations,7 = G+(i, t)
eA

T ′′
B

; however,7 in the foregoing equations

is determined by the external voltage and no reference to eA or T ′′
B is necessary in its definition.

It follows from (44) and (45) that

is (t, u) = 1

t
7

(
1

t
, tuw

)
− 1

t2
iw

(
1

t
, tu

)
(47)

where the parameter 7 is the same in both is and iw. Of course, the current is an analytical
function of the applied voltage, independent of whether one considers the weak or strong
back-scattering expansions, so the labels s, w can actually be suppressed from the equations.
It follows that, going back to physical variables,

I (λ, U, g) = 1

2π
W

(
1

g
,U

)
− gI

(
λd, U,

1

g

)
. (48)
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Now, W in turn can be expressed in terms of U, I , using the relation (16), reproducing (43).
The relation between the current and the applied voltage is implicit in the foregoing

equations. It can, however, be made explicit by elimination of the parameter 7, and we quote
here the lowest orders for completeness. In the weak back-scattering limit one has

i = −1

t
β1(tu)

2((1/t)−1)+1 −
[

1

t3
(t − 1)(t − 2)β2

1 − 1

t
β2

]
(tu)4((1/t)−1)+1 + · · · (49)

and in the strong back-scattering limit

i = α1u
2(t−1)+1 +

[
(t − 1)(2t − 1)α2

1 + α2
]
u4(t−1)+1 + · · · . (50)

Meanwhile, the parameter 7 can also be expanded, say in the weak back-scattering limit:

7 =
(

1

t
− 1

)
β1(tu)

2(t−1)+1 +
[
(t − 1)(2t − 1)α2

1 + α2
]
u4(t−1)+1 + · · · . (51)

One can directly check the duality relation (47) on these formulae. Notice that, despite the
more complex physics, which now involves screening, the exponents of the weak and strong
back-scattering expansions are the same as in the fractional quantum Hall case.

Finally, the duality was extended to finite temperatures in [20, 22], meaning that
formula (34) holds at finite temperature. Since (16) is still true too, the formula (43) extends
to finite temperature as well.

5. Conclusions

This paper hopefully solves the tunnelling problem with a proper treatment of the coupling to
the reservoirs, hence completing and correcting [5,15]. We have only treated here the spinless
case, but the method extends straightforwardly to the spinfull case, at least when the spin
isotropy is not broken, and the problem maps onto a supersymmetric boundary sine-Gordon
model [15]

The duality we observed does raise interesting physical questions, in particular concerning
the nature of the ‘charges’ that tunnel in the weak back-scattering limit. We hope to get back
to this issue with computations of the dc shot noise.

Finally, we stress that the results presented in appendix B provide some of the first direct
connections between the traditional Keldysh approach and the one based on integrability and
the Landauer–Buttiker formalism. A better understanding of the relations between the two
approaches seems one of the major outstanding issues in this field.
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Appendix A. Semi-classical computations

In studying the classical limit, one usually concentrates on the behaviour of εj for j finite
while g → 0, that is t → ∞ [23]. This is not sufficient in the study of transport properties,
where the knowledge of ε±, that is pseudoenergies for nodes at the other end of the diagram,
are required. The necessary analysis is a bit more complicated then. Firstly, it is convenient to
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introduce the new quantity Yj (θ) ≡ eεj (θ)/T , and to recast the TBA system, using the identity
s
(
θ + iπ

2(t−1)

)
+ s

(
θ − iπ

2(t−1)

) = 2πδ(θ), into

Yj

(
θ +

iπ

2(t − 1)

)
Yj

(
θ − iπ

2(t − 1)

)
= [

1 + Yj+1(θ)
] [

1 + Yj−1(θ)
]
. (A.1)

In the limit where g → 0, we introduce new variables s ≡ j

t
, α = 2θ

π
, and e−χ ≡ eε

t2
, and

expand the left and right hand sides of equation (A.1) to obtain the Liouville equation [24](
∂2
s + ∂2

α

)
χ = 2eχ . (A.2)

The general solution of this equation that is relevant here is5

e−χ = 1

(2i sin πρ)2
{
Jρ

[
e(π/2)(α+is)−ln(2T )

]
J−ρ

[
e(π/2)(α−is)−ln(2T )

] − (ρ → −ρ)}2
(A.3)

where Jρ are the usual Bessel functions, ρ = iW
2πT . The freedom in the arguments of the Bessel

functions α + is → λ(α − αo + i(s − s0)) has been resolved by matching with the asymptotic
boundary conditions εj ≈ 2 sin

(
jπ

2(t−1)

)
eθ as θ → ∞. As for the index of the Bessel functions,

it is obtained by matching against the result at low energies:

eεj (−∞)/T =
[

sinh(j + 1)W/2tT

sinhW/2tT

]2

− 1.

We can now compute εt−2 by setting s = 1 in the solution (A.3): one finds

e−χ(α,1) = [
JρJ−ρ

(
ie(π/2)α−ln(2T )

)]2
.

It follows that

eε±(θ)/T = tIρ

(
eθ

2T

)
I−ρ

(
eθ

2T

)
. (A.4)

The current on the other hand is

I =
∫ ∞

−∞
|T++|2 (σ+ − σ−) dθ = T

2π

∫ ∞

−∞
dθ

1

1 + e−2(t−1)(θ−θB)

d

dθ
ln

1 + e−W/2T e−ε/T

1 + eW/2T e−ε/T .

In the limit t → ∞, this becomes then

I = T

2π
2 sinh(W/2T )e−ε±(θB)/T . (A.5)

Replacing ε± by his classical expression reproduces then the result (18).

Appendix B. Low temperature expansion

The remarkable relation [25]:

I (W, T ) = I (W, T = 0) +
π2T 2t

3

d2I

dW 2
(W, T = 0) (B.1)

was initially discovered, following a Keldysh expansion of the left and right hand sides, in
the context of dissipative quantum mechanics in [26]. In (B.1), W is the chemical potential
defined in the text—it would coincide with the Hall voltage V in the context of the fractional
quantum Hall effect [5].

5 This is of the general form of solution e−χ = (1−A(z)B(z̄))2
4∂A ¯∂B for the equation ∂∂̄χ = 1

2 eχ , where A = J−ρ
Jρ
(ez),

B = Jρ
J−ρ (e

z̄).
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Figure B.1. The broken curve is the order T 2 correction to the non-equilibrium current as estimated
by equation (B.1). The dotted curve is the same correction calculated from the TBA at T = 0.2 (it is
difficult, for technical reasons, to go below this value with enough accuracy). The two curves are in
good qualitative agreement: notice that both of them are below the axis in the weak back-scattering
limit. On this figure, t = 7.

We shall now prove that the current obtained from the TBA does indeed satisfy this
relation: as (B.1) involves out-of-equilibrium quantities and the temperature, it provides a
very non-trivial verification that a Landauer–Buttiker type approach can safely be applied to
integrable quasiparticles.

To start, we recall the general expression for the current (15):

I = 1

2π

∫ ∞

−∞
dθ

dε

dθ

(
1

1 + e(ε−W/2)/T
− 1

1 + e(ε+W/2)/T

)
1

1 + e−2(t−1)(θ−θB)
(B.2)

where ε itself is a function of T . Recall also the value

eε(θ=−∞,T )/T = sinh(t − 1)W/2tT

sinhW/2tT
. (B.3)

We will only be interested in the terms of order T and T 2 in the current: we can therefore drop
exponentially small contributions, which makes matters considerably simpler. For instance,
only the first term in (B.2) contributes and the value of ε(−∞, T ) coincides at this order with
its value for T = 0, ε(−∞, 0) ≡ εmin = t−2

2t W .
To proceed, we consider the first term in (B.2) and assume first that ε(θ) takes its T = 0

value. The finite T corrections (we denote them by δI (1)) then entirely arise from a simple
generalization of Sommerfeld’s expansion in the case of free electrons. We use here the same
notations as in the appendix of [27]. Introducing the function

H(ε) = 1

1 +
[
TB

eθ(ε)
]2(t−1)

(B.4)
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we find

I = 1

2π

1

1 + e(εmin−W/2)/T

∫ W
2

εmin

dε′H(ε′)

+
1

2π

∞∑
n=1

1

n!

dn−1

dεn−1
H |ε=W/2

∫ ∞

εmin

(ε −W/2)n × (−) d

dε

1

1 + e(ε−W/2)/T
. (B.5)

Since we neglect exponentially small terms, we can neglect the filling fraction in the first
prefactor and replace the bound of integration in the integral by −∞, using the fact that
εmin < W

2 . It follows similarly that only terms with n even contribute to the series, and
therefore, to leading order,

δI (1) = 1

2π

∫ W/2

εmin

dε′H(ε′) + a1
T 2

2π

d

dε
H |ε=W/2 . (B.6)

The first term is nothing but I (W, T = 0). As for the second, a1 is the standard constant of
the Sommerfeld expansion

a1 =
∫ ∞

−∞

ε2

2!
× (−) d

dε

1

1 + eε
dε = π2

6
. (B.7)

At the order we are working, we finally obtain

δI (1)(T ) = T 2 π

12

(
dε

dθ

∣∣∣∣
θ=A

)−1 dH

dθ

∣∣∣∣
θ=A

(B.8)

where A is the Fermi momentum introduced in the text. One has, on the other hand,

dH

dθ
= t − 1

2 cosh2(t − 1)(A− θB)
.

To proceed, we must also take into account the changes of ε with temperature in the initial
expression of the current. The leading order correction turns out to be of order T 2 then: this
gives a second contribution δI (2) to the change of the current and shows that there are no
crossed terms to this order.

Neglecting the exponentially small terms as before, the TBA equations for ε do not need
the introduction of other pseudo-energies and are

ε(θ) = eθ − T

∫ ∞

−∞
1(θ − θ ′) ln

(
1 + e−(ε(θ ′)−W/2)/T )

dθ ′. (B.9)

Integrations by part and Sommerfeld expansion give, as in the study of I (1), a leading correction
going as T 2. We can thus write ε(θ, T ) = ε(θ, T = 0) + T 2δε, where we find

δε(θ)−
∫ A

−∞
φ(θ − θ ′)δε(θ ′) dθ ′ = −a1T

2

(
dε

dθ

∣∣∣∣
θ=A

)−1

φ(θ − A). (B.10)

This equation is solved by introducing the operator L of [22]. Calling the integral operator
on the left of (B.10) Î − K̂ (where Î is the identity), one has Î + L̂ = Î

Î−K̂ . Using that(
Î + K̂

) • φ = L, it follows that

δε(θ) = −a1T
2

(
dε

dθ

∣∣∣∣
θ=A

)−1

L(θ,A). (B.11)

Using the value

dε

dθ

∣∣∣∣
A

= W√
2t

(B.12)
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determined from [22], we find therefore

ε(θ, T ) = ε(θ, T = 0)− T 2 π2

3W
√

2/t
L(θ,A). (B.13)

Of course, the operator L can be made explicit:

L(θ, θ ′) = L(θ ′, θ) = φ(θ − θ ′) +
∫ A

−∞
φ(θ − θ ′′)φ(θ ′′ − θ ′) dθ ′′ + · · · . (B.14)

The quantity ε we use here is related with another quantity εh+ introduced in the main text (23)
and studied in great detail in [22], by ε = W

2 −εh+ . In the latter reference, the following identity
is established:

L(θ,A) = −
√

2tW
d2ε

dW 2
. (B.15)

Using this and integrating by parts, we find

δI (2)(T ) = T 2 π

6W

√
t

2

∫ A

−∞
dθ L(θ,A)

dH

dθ
. (B.16)

So collecting all terms,

I (T ) = I (T = 0) + T 2 π

6W

√
t

2

[
dH

dθ

∣∣∣∣
A

+
∫ A

−∞
L(θ,A)

dH

dθ
dθ

]
. (B.17)

To conclude, we now turn to derivatives of the current with respect to W at vanishing
temperature. The current is usually written as

I (T = 0) =
∫ A

−∞
ρ(θ)H(θ) dθ (B.18)

where the density ρ is given by ρ = − 1
2π

dεh+
dθ . Using integration by parts, one has

dI

dW
= 1

2π

∫ A

−∞

dεh+
dW

dH

dθ
dθ. (B.19)

Taking another derivative, using (B.12) and (B.15), one finds

d2I

dW 2
= 1

2πW

√
1

2t

[
dH

dθ

∣∣∣∣
A

+
∫ A

−∞
L(θ,A)

dH

dθ
dθ

]
(B.20)

and thus, comparing with (B.17)

I (W, T ) = I (W, T = 0) + t
π2T 2

3

d2I

dW 2
(W, T = 0) (B.21)

(this, up to exponentially small terms and higher order analytical terms), thus proving the
identity.

As commented in the main text and in [5], the differential conductance for g < 1
2 is

negative for large enough W/TB (this result does not rely on the Bethe ansatz and is a simple
consequence of the non-linear I–W curve present in the Luttinger liquid). It follows from (B.1)
that, for such values of g, the current in the fractional quantum Hall problem diminishes when
T is increased from T = 0, provided W/TB is large enough. This is a rather counterintuitive
phenomenon: a priori, one expects that, the larger T , the more energy there is, and therefore
the less important the back-scattering should be. Of course, the current depends on more
complex details than the overall energy, and it is well possible that W,T , and the non-trivial
interactions produce an overall less efficient population of quasiparticles, even though T is
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increased. Notice that the current can also decrease when T is turned on now at fixed U , as is
clear in figure 5.

To conclude, observe that, using (B.1) together with the duality relation at T = 0, the
same relation is found to hold to order T 2, in agreement with the fact that the duality relation
should actually hold at any temperature.
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